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Multivariate monitoring for time-derivative non-Gaussian batch process
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Abstract—This research is an application of process monitoring on a pilot-scale sequencing batch reactor (SBR) using
a batchwise multiway independent component analysis method (MICA) for denoising effect, which can extract mean-
ingful hidden information from non-Gaussian data. Three-way batch data of SBR are unfolded batch wise, and then
a multivariate monitoring method is used to capture the non-Gaussian and nonlinear characteristics of normal batches.
It is successfully applied to an 80 L SBR for biological wastewater treatment, which is characterized by a variety of
error sources with non-Gaussian characteristics. In the monitoring result, multiway principal component analysis (MPCA)
can detect the abnormal batches with a false alarm rate of 47.5%, whereas MICA charts show less false alarm rate of
4.5%. The results of this pilot-scale SBR monitoring system using simple on-line measurements clearly demonstrated
that the MICA monitoring technique showed lower false alarm rate and physically meaningful robust monitoring results.
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INTRODUCTION

Due to increasing environmental constraints and the necessity of
reliable wastewater treatment, efficient modeling and monitoring
methods are becoming more and more important. Reliable model-
ing and monitoring techniques of biological wastewater treatment
plants (WWTP) are necessary to maintain the system performance
as close as possible to optimal conditions. An adequate model en-
hances the understanding of the biological processes and it can be
a basis for better process design, control, and operation. Also, pro-
cess monitoring and early fault detection methods are efficient to
execute corrective actions well before a dangerous situation occurs
in biological processes [1-5].

Sequencing batch reactor (SBR) processes have been interested
in the point of their flexibility with a very simple physical struc-
ture, when treating wastewaters with high concentrations of nutri-
ent, nitrogen, phosphorous, and toxic compounds from domestic
and industrial sources. An SBR has a unique cyclic batch opera-
tion, usually with five well-defined phases: fill (static-fill, mixed-fill,
aerated-fill), reaction (mixed-reaction, aerated reaction), settle, draw
and idle (Fig. 1). This flexibility of operation may be attributed to
their single-tank designs and the flexibility that allows them to meet
many different treatment objectives, which is derived from the pos-
sibility of adjusting the duration of the different phases. But the SBR
process is highly non-linear and non-Gaussian from the nonlinear
biological reaction kinetics, time varying and subject to significant
disturbances like hydraulic changes, composition variations and equip-
ment failures. Small changes in concentrations or flows can affect
effluent quality and microorganism growth [6-9].

Even though operators are aware that there are some problems
in treatment performance, they cannot quickly find or predict what
the causes are and when the problems will occur because most batch
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Fig. 1. Schematic of SBR operation during one cycle [8].

processes are run without any effective form of real-time on-line
monitoring. The treatment performance of SBR is often only ex-
amined off-line in a laboratory, the key indicator of process perfor-
mance. Therefore, multivariate statistical monitoring of SBRs is
crucial to detecting faults that can be corrected prior to completion
of the batch or can be corrected in subsequent batches because it
may take several days, weeks or even months for the biological pro-
cess to recover from abnormal operation [10,11]. It has been reported
that on-line sensor values collected in SBR are related with dynamic
characteristics of the nutrient concentrations (COD, NH;-N, PO;”
and NO;) in SBRs [6]. The derivative of pH, ORP and DO pro-
files can detect the ends of phosphate release, ammonia conversion,
and phosphate uptake, which also are useful information sources.
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But these derivatives of the signals may make it a nonlinear behav-
ior. Especially, for the modeling of nonlinear dynamic systems that
have a large or even an infinite phase space, principal component
analysis (PCA) is able to come up with a lower dimensional sub-
space and becomes a more non-parsimonious model than a linear
dynamic system [12-14].

Multiway principal component analysis (MPCA), developed by
Nomikos and MacGregor [15], has been shown to be a powerful
monitoring tool in many industrial batch processes. However, it has
the shortcoming that the measurement variables of the batch pro-
cess should be normally distributed and linear. In this work, it is
shown that multiway independent component analysis (MICA) sug-
gested by Yoo et al. [9] can be used to overcome this drawback for
better monitoring performance of a biological batch process. MICA
is able to tackle the non-Gaussianity of a biological process and the
nonlinearity of a time-derivative of pH, ORP and DO signals. The
proposed method is applied to an 80L SBR for biological waste-
water and compared with other conventional monitoring method.

THEORY

1. Independent Component Analysis (ICA)

To illustrate the superiority of ICA over PCA, we applied the two
types of analysis to a simple example system, similar to that used
by Hyvérinen et al. [16] and Lee [17] except that a modified mixing
matrix was used in the present work. Let’s consider two source var-
iables that have the uniform distributions shown in Fig. 2(a). The
source variables are linearly independent, i.e., the values of one source
variable do not convey any information about the other source var-
iable. These sources are linearly mixed as follows:
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Fig. 2. (a) Scatter plot of the original source data; (b) The mix-
tures and axes of PCA and ICA; (c) The recovered source
data using PCA; (d) The recovered source data using ICA.
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where x is measured signals, A is the unknown mixing matrix, s is
the source signals. Fig. 2(b) shows the scatter-plot of the mixtures.
Note that the random variables x, and x, are not independent be-
cause it is possible to predict the value of one of them from the value
of the other. When PCA is applied to these mixed variables, it gives
two principal components. The axes of the first and second PCs
(PC1, PC2) are shown in Fig. 2(b). The first PC is the axis captur-
ing the highest variance in the data and the second PC is the axis
orthogonal to the first PC. Fig. 2(c) shows the PCA solution, which
differs from the original because the two principal axes are still de-
pendent. However, the ICA solution shown in Fig. 2(d) can recover
original sources since ICA not only decorrelates the data but also
rotates it such that the axes of u, and u, are parallel to the axes of s,
and s, [17]. The axes of the first and second independent compo-
nents (IC1, IC2) are shown in Fig. 2(b).

In the ICA algorithm, it is assumed that d measured variables,

Xy, X, .., X4, Can be expressed as linear combinations of m (<d)
unknown independent components, s, S,, ..., S,.. The relationship
between them is given by

X=AS+E @

where X=[x(1), x(2), ..., x(n)]€ R*" is the data matrix (ICA uses
the transposed data matrix, in contrast to PCA), A=[a,, ..., a,]e

R*" is the unknown mixing matrix, S=[s(1), s(2), ..., s(n)]e R""
is the independent component matrix, E€ R*” is the residual matrix,
and n is the number of samples. Here, it is assumed that d>m (when
d=m, the residual matrix, E, becomes the zero matrix). The basic
objective of ICA is to estimate both the mixing matrix, A, and the
independent component, S, from only the observed data, X. Alter-
natively, one could define the objective of ICA as follows: to find a
demixing matrix, W, whose form is such that the rows of the re-
constructed matrix S, defined as

S=WX 3

become as independent of each other as possible [16].
2. Monitoring of MICA

The monitoring method based on MICA is similar to that based
on MPCA. MICA is equivalent to performing ICA on a large two-
dimensional matrix X constructed by batchwise unfolding the three-
way data matrix X. MICA decomposes the three-way array X into
a summation of the product of independent vectors s, and loading
matrices A, plus a residual array E so that the ICs s become as in-
dependent of each other as possible:

X=Y5.®A,+E=Ysa +E=X+E “)
=1 r=1

where ® denotes the Kronecker product (X=s®A is X(i, j, k)=s(i)
A(j, k)) and R denotes the number of ICs retained. The S and A
matrices in Eq. (4) can be equivalent to the loading matrix and score
matrices by analogy with MPCA, i.e., S can be regarded as the score
matrix T, and A can be treated as the loading matrix P. The ith ele-
ments of the independent vector s correspond to the i” batch and
summarize the overall variations in this batch with respect to the
other batches over the entire history of the batch. The mixing matrix,
A, summarizes the time variations of the measured variables about
their average trajectories. The elements of this matrix are the weights,
which give the independent vectors s for a batch when applied to
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each variable at each time interval within that batch [9].

Batch processes are, by nature, leading to a 3-way matrix (X(Ix
JxK)) of data. In a typical batch run, j=1, 2, .. ., J variables are meas-
ured at k=1, 2, ..., K time intervals throughout the batch. There
exists similar data on several (i=1, 2, ..., I) similar process batch
runs. MPCA needs to unfold this matrix in order to obtain a two-
way matrix, and then perform PCA. Fig. 3(a) shows the unfolding
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Fig. 3. (a) Batchwise unfolding method of MICA for a three-way
batch, (b) schematic diagram of the pilot-scale sequencing
batch reactor.

method for MICA. By subtracting the mean of each column of the
unfolded matrix (X(IxJK)), the mean trajectory of each variable is
removed, so that the major nonlinear behavior of the process can
be eliminated [15] but still remains a non-Gaussian behavior. Once
the matrix is mean centered and variance scaled and ICA is per-
formed to tackle the remaining non-Gaussianity, the results from
ICA are the loading vectors and the calculated scores for each batch.
The loading vectors have a weight for each variable at each time,
representing the history of the process. In this paper, MICA instead
of MPCA is used to extract the nonlinear structure of the unfolded
matrix [9].

In MICA, two statistics are deduced from the process model in
normal operation: the D-statistic for the systematic part of the pro-
cess variation and the Q-statistic for the residual part of the process
variation. The D-statistic for a batch k, also known as the I statistic,
is the sum of the squared independent scores and is defined as fol-
lows:

P(k)=3,,,0)'s,, (k) ®

The Q-statistic for a batch k, also known as the SPE statistic, is
defined as follows:

SPE(k)=e(k)"e(k) = (x(k) - &(k)) " (x(k) — & (k)) (6)
where % can be calculated as follows:
£=Q 'B;s=Q 'B,W.x )

The confidence limits of the I and SPE statistics in MICA can
be obtained by kernel density estimation [18]. Here, the I’ value is
used to detect faults associated with abnormal variations within an
MICA model subspace, whereas the SPE value is used to detect
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Fig. 4. Batch trajectories of 9 variables including the first derivatives of pH, ORP, DO signals in a SBR.
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new events that are not taken into account in an MICA model sub-
space. For the detailed theory of the MICA method, refer to the Yoo
etal.’s [9] paper.

RESULTS AND DISCUSSION

1. Process Description of the Pilot-scale SBR System

The data used in this research were collected from a pilot-scale
SBR system shown in Fig. 3(b). A fill-and-draw sequencing batch
reactor (SBR) with an 80-liter working volume is operated in a 6 h
cycle mode and each cycle consists of fill/anaerobic (1 h), aerobic
(2 h 30 min), anoxic (1 h), re-aerobic (30 min) and settling/draw
(1 h) phases. The hydraulic retention time (HRT) and the solid re-
tention time (SRT) are maintained at 12 hrs and 10 days, respec-
tively. Six electrodes for conductivity, dissolved oxygen (DO), oxi-
dation-reduction potential (ORP), pH, temperature (T), weight (W),
the first derivative of DO (dDO/dt), the first derivative of ORP (dORP/
dt), and the first derivative of pH (dpH/dt), are connected to the in-
dividual sensors to check the status of the SBR, where a set of on-
line measurements is obtained every one minute. Fig. 4 shows the
typical batch trajectories of nine variables in an SBR including the
first derivatives of pH, DO, ORP signals. Nine variables in Fig. 4
show the significant signs of the nutrient dynamics, such as the ni-
trate knee, nitrate apex, ammonia valley, phosphorous release and
uptake end points. The historical data set of the SBR consisted of
280 batches (70 days) for which nine variables including the first
derivatives of pH, DO, ORP signals were measured at 300 time
instants.
2. Analysis of Historical SBR Data Set using MPCA and MICA

Fig. 5 shows the monitoring results of all 280 batches of the SBR
using the MPCA and MICA methods, where the dotted lines cor-
respond to the 95 and 99% confidence limits. Five components of
the MPCA model were selected by the cross-validation method.
To ensure comparison of equivalent models, five ICs were selected
for the MICA model. From this figure, we notice that the MICA
plot shows characteristics dissimilar from the MPCA one. Compared
to MPCA, MICA points to a lower number of abnormal batches in
SBR. It is well known that changes in the relationships between
variables, such as sensor faults, tend to be detected on the SPE chart,

Batch number ‘

+192

Batch number

while changes in operating conditions, for example, a grade change
and an evolution of new operating condition, are typically identi-
fied on the T” chart. However, the MPCA model may not be valid
because the NOC model is not representative of the SBR process
because it does not follow the Gaussian distribution due to the time-
varying characteristics of SBR process. This difference can be ex-
plained by the density estimation of the SBR data.

The density estimates of the first score (t,;) in MPCA do not fol-
low the Gaussian distribution (not shown in the paper) but the “super-
gaussian distribution’ in which random variables take relatively
more often values that are very close zero or very large. Thus, the
T’ and SPE charts of MPCA that are based on the assumption that
the data are Gaussian distributed may cause a false result when used
for monitoring. As pointed by Yoo et al. [11], note that the T” and
SPE statistics do not depend on a certain distribution, only their con-
fidence limits. Because non-Gaussian data may inflate the vari-
ance, it tends to reduce the T” statistics. Typically, this increases the
false alarm rate of the MPCA, which a normal batch might be judged
as a non-conforming one. Obviously, this deteriorates the reliability
of the multivariate monitoring system and makes it subject to un-
favorable criticism. On-line monitoring on multivariate methods is
often an issue of minimizing the number of false alarms while true
deviations are retained and detected. Robust limits can be deter-
mined empirically by using kernel density estimation as used in this
paper. Moreover, if the batch length of a new batch is different from
the length of old batches, the on-line monitoring method based on
MPCA cannot be applied. Actually, many real-world data sets have
a supergaussian distribution in which the probability density of the
data is peaked in the middle and has heavy tails (large values far
from zero), when compared to a Gaussian density with the same
variance [4]. This observation is the motivation of the MICA model.
MICA is sensitive to modes whose influences on the measured var-
iables follow a supergaussian distribution with large tails and a pro-
nounced peak in the middle.

3. Monitoring of SBR using MPCA and MICA
3-1. Off-line Monitoring of SBR

The MPCA and MICA models for the SBR monitoring were
developed after an analysis of the historical SBR data set. Fig. 5
shows a multivariate analysis result of all 280 batches with MPCA
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Fig. 5. Multivariate analysis of all 280 batches, (a) MPCA, (b) MICA.
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Fig. 6. Monitoring result of 30 test batches. (a) MPCA and (b)
MICA. The dotted lines correspond to the 99% confidence
limit.

and MICA. The MPCA model selected 143 batches to create a rather
broad scope of normal batches, where seven abnormal batches (batch
number: 8, 18, 26, 51, 60, 84, 85) were excluded for the normal
operating condition (NOC) model. The MICA model selected 146
batches, where four abnormal batches (batch number: 57, 58, 84,
85) were excluded for the normal NOC model. The test data set
that consisted of the following 30 batches was projected onto the
reduced MPCA and MICA model spaces.

Fig. 6 shows the batch monitoring result of 30 test batches by
MPCA and MICA. While both of them could detect two abnor-
mal batches (batch 12, 13), MPCA detected batch 9 as an abnor-
mal batch while MICA left batch 9 as a normal batch. Actually, batch
9 is a normal batch. When MPCA is applied to non-Gaussian data,
the T* chart of MPCA may suffer oversensitivity for normal batches,
e.g., batch 9. As a data set deviates from a Gaussian distribution,
the variance tends to increase and hence the T statistic tends to de-
crease. Typically, this increases the false alarm rate of the MPCA
in which a normal batch might be judged as a non-conforming one.
Obviously, this deteriorates the reliability of the monitoring system.

In the SBR operation, the influent wastewater is fed into the reac-
tor and mixed with already existing microorganisms. Therefore, the
performance of the current batch highly depends on microorganism
activity in the previous batches. In addition, the SBR process is sub-
ject to significant disturbances like hydraulic changes and compo-
sition variations. Small changes in concentrations or flows can have
a large effect on the kinetics of biological rations leading to batch-
to-batch variability with non-Gaussian characteristic in effluent qual-
ity and microorganism growth. Compared to the previous ones, the
MICA method provides more meaningful information on the evolv-
ing biological process and captures the biological relation among
batches, which results in more robust monitoring performance.

3-2. On-line Monitoring of SBR using MPCA and MICA

To estimate the future values in X,,,, we used the filling method,
which fills in all future measurements with the current deviation
from the average batch, since online monitoring of SBR needs a
filling method until the batch end [15]. Then the MPCA and MICA
models are tested against a new batch of using a 99% control limit.
New on-line data of a batch of SBR are monitored for every time
point k with the monitoring charts based on the MPCA and MICA
model.
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Fig. 7. On-line monitoring charts for (a) MPCA and (b) MICA in
case of a normal batch (batch number 1).
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Fig. 7 shows the on-line monitoring results of the T and SPE
charts of MPCA and the I and SPE charts of MICA with the 99%
confidence limits in a particular, normal batch (batch number 1). The
batch is monitored for every time instant k in terms of their control
limits of MPCA and MICA. Both MPCA and MICA show that the
T’ charts for this batch are within the control limits for the whole
duration of the batch run [4]. However, the SPE chart of MPCA in
Fig. 7(a) exceeds the confidence limit one time, around the 60" sam-
pling time, that is, the MPCA invokes a false alarm. It results from
the non-Gaussian data distribution by a nonlinear biological phe-
nomenon of the change of phosphorous uptake rate, which occurs
during the phase change (from anaerobic to aerobic). On the other
hand, the I’ and SPE charts of MICA in Fig. 7(b) do not show any
violation for its confidence limit during the whole duration of the
batch run. Therefore, this batch in MICA is assigned as being “in
control”” or “normal”. It illustrates that the selected independent com-
ponents in MICA can extract the non-Gaussian characteristics of
the SBR operation, i.e., the change of the change of phosphorous
uptake rate by the phase change from the anaerobic to aerobic phase.

Fig. 8 represents the on-line monitoring results of the T* and SPE
charts of the MPCA and the I’ and SPE charts of MICA model for
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Fig. 8. On-line monitoring charts for (a) MPCA and (b) MICA in
case of an abnormal batch (batch number 12).
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Fig. 9. Univariate plot of 49 normal batches and the abnormal batch
12, (a) DO, (b) dpH/dt, (c) dORP/dt.

an abnormal batch (batch number 12). Both methods can detect
this batch as an abnormal one from off-line monitoring of Fig. 6.
Both the MPCA and MICA methods show similar detection times
for this batch. The T” and SPE charts of MPCA in Fig. 8(a) show
that this abnormal batch has a large deviation from the 61" time
instant until the end of the batch operation, that is, the monitoring
result of MPCA indicates that the fault continues until the end of
the batch.

Fig. 9 shows the univariate plots of the original DO and two de-
rivatives of pH and ORP signals (dpH/dt, JORP/dt) for 49 normal
batches and batch 12, where DO was over-aerated at the start of
the aeration phase in batch 12. Here, the DO concentration in Fig.
9(a) was increased too early (in the anaerobic phase) but returned
to the normal concentration during the acrobic phase, and the de-
rivatives of pH and ORP signals in Fig. 9(b) show abnormal behav-
iors in only the aerobic phase. The non-Gaussianity of the SBR sys-
tem might cause this lasting false fault detection. On the other hand,
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Table 1. Detection results of offline and online monitoring in the
false and missed alarms

False alarm rate Missed alarm rate

(Type I error) (Type 11 error)
MPCA MICA MPCA MICA
Offline monitoring 33%  0.0% 0% 0%
Online monitoring  47.5%  4.5% 13.2% 15.4%

the I’ and SPE charts of MICA in Fig. 8(b) detects this abnormal
batch behavior around the 80th time instant but returns below the
control limits around the 140" batch instant.

Table 1 shows the detection results of offline and online moni-
toring of the MPCA and MICA, where type I and II errors corre-
spond to false and missed alarms, respectively. In oftline monitoring,
MPCA shows a false alarm rate of 3.3%, while MICA shows a false
alarm rate of 0%. In the online monitoring result, the MPCA control
charts detect the abnormality of batch 12 too fast with a false alarm
rate of 47.5%, whereas the MICA charts successfully show a de-
viation in their patterns only during aerobic phase with a false alarm
rate of 4.5%. Because MICA can detect this fault during the aerobic
phase and return within the control limits after the fault is released,
MICA can detect a fault only during the aeration phase, which re-
sults in fewer false alarms and more robust monitoring result. On
the other hand, both MPCA and MICA show the missed alarm
rate of 0% in the offline monitoring result, that is, no missed alarm.
In online monitoring, MICA shows larger missed alarm rate than
MPCA. 1t represents that MICA is a more conservative monitor-
ing method than MPCA. If one focuses on the reduction of false
alarms (type I error), MPCA should be preferred, but if one em-
phasizes minimizing missing alarms (type Il error), MICA is pre-
ferred in the monitoring system. In general, the operator in the plant
prefers a robust and physically meaningful monitoring system with
a lower false alarm rate.

It is well known that the first derivatives of pH, ORP and DO
signals can give valuable information about the nutrient dynamics,
such as the nitrate knee, nitrate apex, ammonia valley, phospho-
rous release and uptake end points [6]. Although these three addi-
tional signals for MPCA can be used to access to this valuable in-
formation, derivation always transforms the noise components in
the data set, which makes the SBR data set more nonlinear. And then
this nonlinearity from noise transformation makes the SBR data
set into more non-Gaussian than the original variables [16]. Fig. 10
shows the QQ plot of the second score of the MPCA and the MICA
model. The impact adding the first derivatives to the original vari-
ables was assessed through the use of QQ plots. From this figure, it
can be deduced that the SBR process has severe non-Gaussian and
non-Gaussian relations and the extracted principal scores of MPCA
have a large deviation from linearity in Fig, 10(a). It means that MPCA
has lower modeling ability, which may lead to a higher false alarm
rate of a monitoring result of MPCA. On the other hand, MICA can
extract the non-Gaussian independent components, that is, capture
the non-Gaussianity from nonlinearity including the first derivatives
of the original variables in SBR data in Fig. 10(b). This figure shows
that the MICA has better non-Gaussian feature extraction results
than MPCA.
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Fig. 10. QQ plot for the first score vector of (a) MPCA (b) MICA.

CONCLUSION

This paper describes the application of a pilot-scale SBR moni-
toring using batchwise MICA. While MPCA has the shortcoming
that the measurement variables of the batch process should be Gaus-
sian, MICA can extract meaningful hidden information from non-
Gaussian data sets. The results of the pilot-scale SBR monitoring
system using simple on-line measurements clearly demonstrated that
the MICA monitoring technique showed lower false alarm rate and
physically meaningful, that is, robust, monitoring results. It can be
easily applied to most batch or fed-batch processes which have
non-Gaussian distributed data, for example, chemical and biochem-
ical processes.
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